
36 6 2 1962

RSC's signal construction outlook 1962 begins on this page, and the mmunications outlook for 1962 be-15 on page 17. A review of C&S tivity in 1961 is on page 12. Tables last year's signal installations begin page 13. Communications tables gin on page 16.

) ailroads have budgeted \$57,917,-100 in capital expenditures for naling facilities during 1962. This is increase of about 20% over last ir, according to a recent *Railway* maling and Communications survey. venty-three railroads planning to inase capital expenditures for signal-(in 1962 reported budgets totaling 1.201,600. A total of \$10,342,100 is dgeted by 13 roads who say their Dital spending plans for signaling the same as last year. And 23 railuds say that they will spend less for naling in 1962 than in 1961; their dgets total \$3,373,400.

Centralized traffic control leads all er projects in the 1962 spending ns of U.S. and Canadian railroads, reported to RS&C. Eighteen roads e CTC plans approved for this r, 11 of which expect to install a al of 1,829 road-miles. This is 85 id-miles more than was installed by railroads in 1961. The reporting ds also indicated that 359 miles of tk would be taken up as a result of se CTC installations. Several railds are replacing double-track autotic block signaling with singleck CTC.

Other areas of significant signal struction activity include interlock-

ings, highway crossing protection and automatic retarder classification yards. In the latter category, no automatic vards were completed in 1961; only three were started. Five roads reported that each will start construction of an automatic yard during 1962. Nineteen railroads reported plans to install flashing-light signals and/or flashing-light signals with automatic gates at 685 highway-railroad grade crossings. Another 12 roads state that their highway crossing protection programs in 1962 will be equal to or greater than the 1961 programs. Interlocking construction centers around consolidations

of existing plants and replacement of attended plants with automatic interlockings. The survey shows 11 railroads installing 90 interlockings, of which 32 are automatic plants. Six other roads reported activity in this field, but gave no specific figures.

Hotbox detector installations will also hold strong during the coming year, although survey results show only 28 detectors are presently in signal department budgets. One industry source estimates that total installations will probably be in the neighborhood of 150 hotbox detectors. Manufacturers report that orders for these safety de-

C&S Activity Down in 1961

Although indications were that communications and signal activity in 1961 would be at the previous year's level, the railroads declining income sent C&S construction to its lowest levels since 1957–58. Communications facilities installed during 1961 totaled 8,548 units, a drop of 46% from 1960. Signal construction fell 31% from the previous year to 6,370 units installed in 1961. The last equivalent years for this level of C&S construction were 1957 for communications (8,445 units) and 1958 for signaling (5,929 units). Since then, C&S activity had risen until the 1961 fall off.

In spite of the gloomy year, significant technological developments and activity trends added a cheery note to the overall performance. As anticipated by many, microwave continued to hold the communications spotlight. D&RGW placed its 700-mile microwave and facsimile system into full operation. CN, AT&SF, SOU and UP placed important microwave links in service and let sizeable contracts for additional microwave systems. On the FCC front, the railroads and AT&T agreed over interconnection. A Commission decision is expected within a month or two. An investigation is now underway by the FCC into AT&T's Telpak tariff (the telephone company's bid to compete with private microwave systems by providing bulk communications channels).

On the signal side, automatic train operation tests were continued by the NYCTA on its crewless Times Square-Grand Central Terminal shuttle train. It went into experimental passenger operation Jan. 4. A coke-quenching railway operation placed in service during 1961 utilized an automatically controlled crewless locomotive and the SAL installed "talking" hotbox detectors which radio hot journal locations to train crews and dispatchers. vices already show an increase over a year ago.

Automatic train operation (ATO) a popular topic among railroad men Wall Street security analysts, labor leaders and politicians, should make headlines in 1962 when two installations are expected to be placed in service. One, hailed as the world's first allautomatic railway, is the Carol Lake ATO installation on the six-mile Caro Lake Railway between the Smallwood Labrador, iron ore mine and Iron Ore Co. of Canada's concentration plant at Wabush Lake. Hardware is now being readied, with testing scheduled for this spring and operation soon thereafter. Claude K. Howse, Newfound land representative of the Iron Ore Co. of Canada, has said: "We will be moving 50,000 tons [of iron ore] a day which will be hauled six miles by rail to our \$70-million concentrating plant Ninety-six trains a day will run over a single track, and not a person on them -the world's first automatic railway." He said his company's part of the project would come into production in July 1962.

The other ATO installation, probably the most talked about, is the New York City Transit Authority's crewless subway train that is in test service on the Grand Central Terminal-Times Square shuttle. Testing was completed and the automatic train was ready to run December 15, 1961, when a threatened strike by the Transport Workers Union (representing motormen and conductors) prompted Arbitrator Theodore W. Kheel to order the in-service operation to be postponed until after the new contract between the TWU and NYCTA became effective this year.

Although the crewless subway train was the subject of much heated debate between TWU President Michael J. Quill ("Gadget or no gadget, the motormen and conductors will stay on the trains") and NYCTA Chairman Charles L. Patterson ("There is nothing revolutionary. . . . It is simply a step forward"), it will run for a sixmonth experimental period with a TWU motorman on board. After this period, TWU and NYCTA will talk about the man power problem on this and other (future) ATO installations on the subway. NYCTA has indicated the desirability of automating the other two GCT-TS shuttle runs as well as three others, and possibly trains running to the 1964 World's Fair on Long Island.

Other ATO installations are on the drawing boards, and some are far enough along so that the electronic equipment is being developed. Field testing of ATO should continue this

(Please turn to page 17)

Signal Facilities Installed in 1961

Railroad-Highway Grade Crossing Protection Installations in 1961

Railroad

ALASKA

ATGSF

AGSAB

AGWP ACL

BGO

BAR

Flashers

2 88

6

30

25

1

8

175

124

6 6

18

1 ì

48

15 4 26

29 1

2

325

-4

20*

Ĩ 12 15

Ì

12

1

2 ١ī

7

4 13

ł

4 33 7 Gates

31

1

12

13

37

91014212312

4

_

5 4 1

Summary of Signal Equipment Installed, 1959–1961

Summary of Signal Equipment Installed, (759-1901				
	1959	1960	1961	B&M CNR CPR CofGa
Traffic control and block signal systems Track miles* Controlled signals Automatic signals Power switches Spring switches Electric locks Automatic train stops (ATS) Rolling stock with ATS Cab signals	2,370.8 1,485 1,349 536 94 426 155 174 2	3,319.7 2,116 1,547 849 77 828 196 13	2,116,2 1,167 1,134 452 55 523 234 	CNJ CV C&O C&EI C&NW CB&Q CGW CMStP&F CNS&M CRI&P CSS&SB CTA
Glassification yards Retarders Power switches	48 164	57 ['] 463	15 59	D&H D&RGW DT&I DM&IR E-L
Highway crossi ngs p rotected Flashers only Gates and flashers	1,012 387	1,095 382	1,128 425	FEC GA G&F GN
Interlockings Power switches Home signals Distant signals	264 440 142	323 527 147	275 510 94	CB&W GM&O IC IT KCS KCT
Safety devices Broken flange detectors Dragging equipment detectors Hotbox detectors Slide fence, feet* Other	10 23 121 39,125 	15 17 141 39,966 74	15 37 115 16,461 19	LI L&N MeC MKT MP MONON NYC
Spring switches (not in TCS) Facing point locks Signals at spring switches Totals Excluded from totals.	47 17 61 6.957	125 63 182 9,237	53 17 <u>40</u> 6,370	NYCGSH NYNHG NGW NP ONL PGE PRR

Yard Signaling Installed During 1961 on U.S. & Canadian Raili

BGM	Mechanicville, N. Y.	1 master retarder
CNR	Montreal, Que.	6 non-interlocked switches, 1 cab signal
033	Russell, Ky.	1 interlocked switch
CMStPGP		1 yard control system for 21 switches
MP	No. Little Rock, Ark.	13 retarders, 41 class tracks,
		40 non-interlocked switches, 2 cab signals
NGW	Roanoke, Va.	1 retarder, 9 class tracks, 6 interlocked
IC W		and 6 non-interlocked switches

1961 Hotbox Detectors Installed

ATESF ACL 860	2 5 2 2 2 5 3 5 3 5 3	GMGO LGN	9	ATGS FEC
BGM	2	NYC NGW	23	NYCT StL-S
INR IGO	25	SAL SOU	28 10	SP
CGEI CMStPGP	3	SP T&P	2	SPS
FEC DAH	3	Total	115	

1	Miscellaneous	Detectors	Installed

252	GM&O L&N NYC	9 23	ATGSF FEC NYCTA	2 flood detectors 4 track circuit controlled traffic signals 15 smoke detectors
2	NGW	5	INTCIA	15 smoke detectors
2 2	SAL	28	StL-SF	1 OS'ing device
5	SOU	10	SP	1 high load detector
			•	
3	SP	/		1 mudslide detector
5	TGP	2	SPS	12 motor car indicators
3	Total	115		

PRS	7
PGN	7 2
	1 2
	2
	18
SAL	18
SOO	1
	23
	105
	.11
TPGW	2
тнбв	2 1
	27
	9
	5
	1,128
Total	1,120
100% PR Funds	192
	133
Joint RR & non-RR	
Funds	803
Includes 15 rotating	stop signals.
Digitized by Goog	gle
	PGN PGLE PGWV QC RDC StL-SF StL-SF StL-SW SAL SOO SOU SP TRRStL TGP TPGW THGB UP WAB WM WP Total 100% RR Funds 100% non-RR Funds 100% non-RR Funds 100% non-RR Funds 100% reads 100% rea

425

122

263

40

Centralized Traffic Control Installed in 1961

Digitized by GOOgle

14	Railroad	Location	Road Miles	Switches	Locks	Sigr	nals
	ATGSF	Maine-Williams Jct., Ariz. (ABS) Ethel-WB Jct., Mo. Lubbock, TexTexico, N. M. Clovis, N. M., Yard	12.2 58 88 3.2	21 15 21	12 ats 35 44	33 c 49 c 23 c	72 a 24 a
	ACL	Maine-Williams Jct. and Crookton-Seligman, Ariz. Belt JctBirds, Tex. Contentnea-Micro, N. C.	19.9 3.6 19	10 1 ss 4	4 3 5	14 c 3 c 12 c	24a 12 a
	въо	Smithfield-S. Beard, N. C. Bayview, MdPhiladelphia, Pa. Orleans-Okonoko, W. Va.	39.9 86.5 13.2	10 17	26 36 2	28 c 42 c	30 a 52 a 8 a
	въм	Patterson Creek, W. Va McKenzie, Md. New River-SD Cabin, O. Seven segments in Mass.	6.3 26.9 15.5	7 4	14 5 12	2 c 17 c 14 c	4 a 14 a 5 a
	CNR	Car repair shop London, Ont. Alexandria, Ont. Turcot-Dorval, Que.	7	52	12 1 8	30 c	1 a 14 a
		Montreal-Eastern Jct., Que. Portage la Prairie, Man Melville, Sask.	4 224	4 28 + 25 ss	17 19	12 c 109 c	53 a
	CPR CofGa	Pacific JctNapadogan, N. B. Bordeaux-Lovalde Rapid, Que. Indian Head-Moose Jaw, Sask. Sterrett-Trammells, Ala.	107 0.3 83.1 29.6	14 + 9 ss gauntlet 20 1 ssl	4	49 c 4 c 56 c 28 c	22 a 43 a
	CGO	Covington-BS Cabin, Va. Cabin Creek JctSt. Albans, W. Va. Pence-Springdale, Ky. Fowlerville-Trowbridge, Mich. Erie, MichAlexis, O.	4.3	12 41 2 4 2	3 17 25 2 5 1	16 c 80 c 13 c	8 a 19 a 6 a 13 a 3 a
	CGEI CGNIW CGWI CBGQ CRIGP CTA	Merrillan-Altoona, Wis. (ABS) Chicago, III. Centralia, III. Beacon-Eddyville, Ia. (ABS) Laramie-Desplaines Ave. (ABS) Wilson-Lawrence Ave. (ABS)	39 3.3 0.1 10 3.3 0.5	З	4 1 10	2 c 7 c	18 a 10 a 10 a 42 a 8 a
)	Clinchfield C&S D&H D&RCW	Elkhorn, KySpartanburg, S. C. Colliers-Afton, N. Y. Salida-Kobe, Colo.	0.7 38 46.6	7 + 1 ssl 6 + 3 ssl	1 1 26 5	2 c 26 c 36 c	29 a 21 a
AILWAY	DMG1R GN	Lynn-Soldier Summit, Utah Mt. Iron, Minn. Aylmer-Surrey, N. D. Pacific JctChester, Mont.	18.3 1 50 59.1	10 8 12	55299	28 c 1 c 32 c 48 c	28 a 1 a
RAILWAY SIGNALING	CM&O IC	Townsend-Brownsville, B. C. Hes-Girard, III, Oliver-Manchac, La. Bluford-Metropolis, III.	1.9 23.5 15 78.5	1 4 2 6+6 ss 2+3 ss	10 5 1	4 c 12 c 6 c 25 c	10 a 8 a 57 a
and COA	KCS LI L&N	Chiles-Fulton, Ky. Stilwell-Sallisaw, Okla. Hicksville-Syosset, N. Y. Beauvoir, MissNew Orleans, La.	41.3 35.5 7 70	7 1 12	7 3 22	10 c 21 c 5 c 36 c	30 a 19 a 26 a
and COMMUNICATIO	MeC NYC	Black Creek-Nyota, Ala. Bangor-Calais Jct., Me. Cleveland, O. (ABS) Toledo, O. (ABS)	15 1,1 0.7 1.9	22	5 1 ats 4 ats	6 c 6 c	8 a 1 a
HOI		Weehawken-Hoboken, N. J.	4	and a second	TANK AND	8 c	4 a

Interlocking Construction During 1961

Railroad	Location	Туре	Switches	Sign	als
ATGSF	Chicago, III.	NF	1	3 h	
	Galesburg, III.	RF	1 7 2 8	11 h	
	Henrietta, Mo.	RF	2	10h	
	CA Junction	RF	8	бh	
	Sibley, Mo.	RF		4h	
	Lockney, Tex.	AA		4 h 4 h	4 d 4 d
	Plainview, Tex. Daggett, Calif.	AA RC-F		7 n	7 0
	San Bernardino, Calif.	CF			
	San Bernardino, Calif.	AM	2	2 h	19048
NCL	Sanford, Fla.	RM	-	2 11	
GO	Five in Philadelphia, Pa.	NF	50	47 h	
IGM	Boston, Mass.	RM	ĩ	1 h	
.	South Acton, Mass.	AF		1 h	1 d
	Nashua, N. H.	RA		1 h	
NR	Niagara Falls, Ont.	RF		8 h	2 d
	St. Hyacinthe, Que.	AF	1	3h	
PR	Montreal, Que.	RP		8 h	
	Edmonton, Alta.	AF	6 1 7 5 4 1	3 h	
60	LaMar, Mich.	RF	7	6 h	6333
	Pelton, Ont.	RF	5	9 h	1 d
GNW	Chicago, III.	NF	4	6 h	
	Oak Park, III.	NF	1	3 h	
	Vale, III.	AF	ż] h	
	Rochelle, III.	AM		3 h	
	Dearing, III.	CP	6	8 h	
GWI	Oakdale, III.	CR-F	3		
CBGQ	Omaha, Neb.	NA		10 h	1
	Chillicothe, Mo.	NA	-	5 h	4 d
CMStPGP	Rondout, III.	RF AF	5		
	Ramsey, Minn.	CF	1		
TA	Chicago, III. Wilson Ave.	AR-M	5	6 h	
-L	Depew, N. Y.	NF	4	6 h	
	West Alden, N. Y.	AF	1	- On	2 d
	East Alden, N. Y.	NF	5 4 1 1	3 h	2 d
	Attica, N. Y.	NF	2	5 h	ĩd
	East Linden, N. Y.	AF	2		2 d
	Rock Glen, N. Y.	NF	1	3 h	2 d
	Silver Springs, N. Y.	NF	2	4 h	2d
SN	Calumet, Minn.	NA		4 h	
OMGO	Girard, III.	RP	1	5 h	1 d
C	North Litchfield, III.	RA		4 h	S. Con
	Chicago, III.	RA		8 h	
	Nortonville, Ky.	ŔĂ		4 h	
_GN	East St. Louis, III.	RA		10 h	8 d
	N. Birmingham, Ala.	NA		10 h	5 d
	Wildwood (Wauhatchie), Tenn.	NF	3	5 h 4 h	5 d
	Lockout (Wauhatchie), Tenn.	NF	3 2 1 2 1	4 h	4 d
MeC	Brunswick, Me.	RA	1	3 h	βd
ATN	Tower A, Boston	AM	2	1 h	
	Copley Jct., Boston	AA	1		
NKT	Denison, Tex.	RA		бh	
MP	Sallisaw, Okla.	RA			
VYC	Croton, N. Y.	AM	2		
2.000	Weehawken, N. J.	RF	4	9h	
	Buffalo, N. Y.	RA		6 h	
	Buffalo, N. Y.	CF		10.50505	
	Rensselaer, N. Y.	RF	4	6h	
	Rensselaer, N. Y.	RF	7	9 h 6 h	
	a Porte Ind			0.0	

SIGNALING INSTALLED IN 1961 continued

-	Danbury, Conn -Poughkeepsie, N.Y. Bedford-Montvale, Va. Fort Lewis-Whitethorne, Va. Norcross, VaBluefield, W. Va. Lubeck-Chillicothe, O. Pelton-Walton, Va. Eggleston-Pembroke, Va.	48 10.8 36.2 32.7 3.7 7 5.5	8 + 3 sst 6 15 3	6 8 8 18 1	31 c 6 c 20 c 26 c 6c 3 c	8 a 2 a 13 a 21 a 1 a
NP	Wadena-Perham, Minn. (ABS)	20	•			21 a
PRR	Petersburg-Baree, Pa. W. Mifflin-Mifflin, Pa. Baltimore, Md. Indianapolis-Lebanon, Ind.	3.9 3.6 1.1 24.7	1	1	2 c 3 c 21 c	1 a 2 a 1 a 8 a
onsgl sal			2	1	4 c	
StL-SW SOO SP	Minneapolis-Buffalo, Minn. Lafayette, La. (ABS) Hearne-Tatsie, Tex. (ABS) Roseville-Lincoln, Calif. Eugene, Ore. Mission JctAurant, Calif.	37 0.4 3.4 9.8 0.4 3	2	4 17 1	26 c 10 c 4 c 3 c	11 a 2 a 2 a 6 a 1 a
WABASH WM	Hardin-Camden, Mo. Baltimore-Hagerstown, Md. (ABS)	13 87		2		4 a 8 a
CT AB	C road miles 1,744.4 Fower- C track miles 1,940.5 Spring S road miles 109.7 SS wi S track miles 175.7 FP lock	-55 th	Auto. train stop 234 Elec. locks 523 (501 CTC) (10 ABS) (12 other)	1,16		,134 a (806 CTC) (328 ABS)
ss =	automatic block signals spring switch spring switch with facing point lock	i	ats = automat c = controlle a ⊏ automat	ed signa	it i i i	

Spring Switches Installed: 1961

| Slide Fe ca. 1961

spring switches	matance	1701	
Railroad	Switches	Signals	
ACL	l fpl		CNR DGRGV
BGO	6	6	GN
BGM	4	2	LGN
CNR	6 4 2 2 fpl	2	NGW
CPR	2 fpi 2	6 5 3 2 2	NP
C&O C&NW	6 fpl		PGWV SPGS
MP	2 fpl	 1 5	UP
MONON	1	1	WP
NYC	2	5	
	1 fpl		
StL-SF	1	1	
SAL	1 fpl	2 6 7	
SOU	4	6	
SP	13	1	
төр	4 fpl		
-			
Total Spring	53	40	
		.0	
Switches with F. P. Lock	53 17	40	

ide Fence: 1961	
	feet
CNR D&RGW GN L&N N&W NP P&WV SP&S UP WP	4,450 5,600 685 225 1,450 495 200 1,650 1,200 506 16,461

NYCGSIL	Gravville, 111 Chappell, 111 Ridge Farm, 111	RA NF RA	5	4 h 5 h l d
NYCTA	BMT-B'way 57th St.	RF		7h 4d
	BMT-B'way 34th St.	ĊF		3h 2d
	BMT-B'way City Hall	ČP		7 h 5 d
	BMT-B'way Whitehall	RF	3	4h 3d
	BMT-CI Term.	ŔM	3 6	5 h
	IRT-Lex. Grand Central	CP	1ĭ	8h 9d
			11	
	IRT-Lex. Brooklyn Brdg.	CF	8	8h 8d
	IRT-Lex. 86th St.	RP	4	4h 6d
	IRT-Seventh 225th St.	RM		6h
NCM	IRT-Brooklyn Flatbush Ave.	RA	4	4 h
NGW PRR	Williamson, W. Va.	NF	4	8h 3h 1d
PKK	Aspinwall, Pa. Englewood, III.	AM AM	1	3h 1d
RDG	Birdsboro, Pa.	RF	0	
	Philadelphia, Pa.	RF	6	
	Perkasie, Pa.	RF	Ŭ	
	Elsmere, Del.	RF		
	Monocasy, Pa.	NF	1	3 h
StL-SF	Holdenville, Okla.	RA		
	Birmingham, Ala.	AM	6	3 h
	Demopolis, Ala. (bridge)	RA		
soo	Chippewa Falls, Wis.	RA		C 1
SOU	E. Durham, N. C.	RA	,	6h 6h 1d
SP	Hattiesburg, Miss. Houston, Tex.	NA RA	1	5h
36	Tracy, Calif.	NF NF	1	3 h
TRRStL	E. St. Louis, III,	RP	40	70 h
	St. Louis	RF	ĩ	3 h
UP	Bonner Springs, Kan.	RF	•	6 h
WAB	Hannibal, Mo.	NA		2h 1d
	Springfield, III.	RA		2 h
	Oakwood, Mich.	NF		_4h
	Totals		275	510h 94d
Type:				
A = Ad	dition A = Automat	ic	h = home signa	als
C = Co	nsolidated F = Free Leve			proach) signals
N = Ne	w M = Mechanie			
R = Rel	puilt P = Pushbutt	on (route)		

Dragging Equipment Detectors: 1961		Detectors: 1961
2 9 4 1 21 37	CB&Q PRR SOU	3 1 <u>11</u> 15
	2 9 4 1	2 CB&Q 9 PRR 4 SOU 1

WUARY 1962

Communications Facilities: 1961

Summary of Communications Installed, 1959-61

-			
	1959	1960	1961
Miles of new or rebuilt pole line	4,574	4,092	6.350
Viles of new aluminum line wire	2,568	4,307	4,947
Viles of new copper line wire	5,727	4,463	3,718
Carrier equipment installed			
Terminals—Voice only	1,169	1,589	1,383
Speech plus telegraph	103	197	148
Telegraph only	968	1,100	1,517
RepeatersVoice only	121	130	78
Speech plus telegraph	4	6	
Telegraph only	7	8	22
rinting Telegraph equipment			
SO, RO, and SR machines	421	725	437
Reperforators	104	240	289
Automatic telephone exchanges	38	28	42
Stations available	3,050	5,585	1,040
Train Radio			
Mobile .	2,090	2,803	1,367
Road base stations	129	452	214
Yard base stations	104	131	51
Walkie-talkies	905	1,525	463
ard loudspeaker systems			
Talk-back speakers	726	677	690
Paging speakers	346	296	332
ntercom systems			
Telephones	72	131	66
Loudspeakers	619	326	409
Totals	10,976	15,949	8,548

Intercom Systems Installed in 1961

Railroad and Facility		Speakers and Phones		
AT&SF	at 3 yards	23 tb	8 p	
	at 2 frt hs	72 s	-	
	at 2 ofcs	11 s		
	at 1 shop		1 t	
ACL	at 2 frt hs	57 s		
	at 2 ofcs	48 s		
BGO	at 2 ofcs	73 s		
BAR	at 1 shop	30 s	14 t	
CNR	at 5 yards	307 tb	201 p	
	at 2 yards	бs	8 t	
	at 1 shop	30 s	14 t	
CPR	at 1 yard	_3 tb		
CGO	at 4 yards	70 tb	3 p	
CB&Q	at 1 frt hs	9 s		
	at 2 shops	9 s	_	
CMStPGP	at 3 yards	37 tb	7 p	
	at 1 frt hs	4 s		
CSS&SB	at l ofc		14 t	
CTA	at lyard	6tb		
Clinchfield	at 1 shop	12 s		
EIGE	at 2 yards	2 tb	lp	
E-L	at 3 yards	27 tb		
GN	at 2 yards	• •	17 p	
LSGI	at 1 yard	1 tb	-	
LGHR	at 1 yard		3 p	
LI	at 4 stations	19 s	20	
LGN	at I yard	35 tb	20 p	
MP	at 2 yards	21 tb	_8 p	
NYC	at 6 yards	107 tb	24 p	
	at 1 frt hs	19 s	9 t	
	at 1 ofc	6 s		
NGW	at 1 yard		<u>6</u> p	
PRR	at 2 yards	14 tb	7 p	
	at 1 shop	2 s		
StL-SF	at 2 yards	l tb	4 p	
SOU	at 2 shops	•	6 t	
	at 1 frt hs	2 s		
SP	at 2 yards	35 tb	23 p	
WAB	at Iyard	1 tb		

tb = talk-back speakers, 690

p = paging speakers, 332 s = intercom speakers, 409

Digitized by Google

t = intercom telephones, 66

Pole Line Construction Activity During 1961 on U.S. and Canadian Railroads

Railroad	Miles of New or Rebuilt Pole Line	Miles of New Wire Installed	Railroad	Miles of New or Rebuilt Pole Line	Miles of New Wire Installed
ACGHB	40				
ATGSF	48				
ACL	358		PRR	191	32 bhd 54 ics
B&O	381		QNSGL	160	
BAR	46		RDG	26	
BGM	35		StL-SF	176	
CNR	883	96 ba, 4,451 ia	SAL	339	61 ihd
		271 bhd, 4 ihd	SOU	73	12 bhd
CPR	200	1,370 bhd, 142 ACSR	SP	577	. – .
ČGO	288	2 bhd, 5*	ŬP	10	
ČĞŇW	250	350 bcs, 50 ics	WAB	37	
CBGQ	139		WM	20	
CMStPGP	275	100 ics	WP	60	
CRIGP	130		** :		8,665
DGH	10			6,350	0,00,0
DMGIR	13	21 ics		to a be a structure	96 miles
E-L	9	12 bhd		ba = bare aluminum	4.709 miles
GN		866 ics		ia = insulated aluminum	
IC	14	258 ia		ACSR	142 miles
KCS	14 69	2018		Total aluminum wire	4,947 miles
LI	50	13 bhd	6 67	ter have have described	2 212 miles
LGN	450	500 bhd		d = bare hard drawn copper	2,212 miles
MP	603	500 0HG		d = insulated hard drawn copp	
MONON	61			s = bare copper-covered steel	
NYC	2		ICS	s = insulated copper-covered s	
NYCGStL	112			Total copper wire	3,718 miles
NP	215		* 6 and	1 1 pair #19 rural distributio	on wire.
16				RAILWAY SIGN	ALING and COMMUNICA

ч	Carrie	r		nting
	Terminals Re		Tele	egraph
· · · · · · · · · · · · · · · · · · ·	4 t		4 T	
	19 v, 30 t	11 v	2 T	2 R
ephone exch., 100 lines)				
crowave stations installed)				
	12 v	łv	11 T	11 R
	2 v, 10 s, 11 t		37 T	32 R
ephone exchs., 77 lines total)				
	бv			
	342 v, 504 MWv		228 T	148 R
	726 t, 170 MWt *	<u></u>		
ephone exchs., 375 lines total)			
acrowave stations installed)				
	62 v, 273 t	15 v, 22 t		
lephone exchs., 55 lines total				
rowave stations installed joint	•			
	8 v, 32 s, 76 t	2 v		
	26 v, 8 s	4 v		
	24 v	18 v	1 T	
Þ	14 v, 34 s, 24 t	3 v	15 T	22 R
	4 v, 6 s	2 v	5 T	11 R
	24 v, 14 t		29 T	
icrowave stations installed)				
	10 v			
	6 v, 2 s	1 v	8 T	6 R
	12 v, 2 s	3 v	5 T	13 R
phone exchs., 83 lines total)				
	6 v			
	6 v, 6 s		 	
	8 v, 2 t		37 T	18 R
phone exchs., 150 lines total)		2 1 4114		
	6 v, 4 MWv	3 MWv		
rowave stations installed)	20 -		17 -	4.0
	20 s		12 T	4 R
	6 v		 	
	36 v, 4 s	3 v	5 T	3 R
	1 t 22 v, 2 s		4 T	
	2 v, 2 s	 l v	3 T	
	24 MWv	I V	21	
rowave stations installed)			_	
iowave stations instance,	41 v, 1 s, 14 t	9 v	9 T	1 R
1 telephone exch., 200 lines				
The exercise 200 miles	90 v, 12 t		4 T	
icrowave stations installed)				
microwave stations installed)				
	2 v			
	2 s. 2 t	·	1 T	2 R
			2 T	10 R
	6 v, 6 s, 8 t			
	39 v, 9 s	1 v	4 T	1 R
	2 t	· •	4 T	I R
	2 s		зт	4 R
	2 v		4 T	
	8 v	1 v		

= voice only = speech plus telegraph = **telegrap**h only = **microwave**

voice terminals s + t terminals telegraph terminals MW voice terminals MW telegraph terminals MW voice repeaters voice repeaters telegraph repeaters

- 51 teletypewriters leased 274 reperforators RR owned
- 15 reperforators leased

R = reperforators

42 telephone exchanges (37 RR owned) with 1,040 available lines (705 in RR owned exchs.)

T = teletypewriter machines, SO, RO and SR

108 microwave stations

(Continued from page 12)

year. Public approval of the first bond issue for the Bay Area Rapid Transit District's San Francisco subway and elevated system is expected this year. BARTD plans to install a completely automatic passenger transit system with crewless trains.

As for the signaling outlook for this year, one signal officer summed it up this way: "I expect 1962 to be a better year than last. We have plenty of signaling to install and we've got the money to do the job."

orty-three U.S. and Canadian railroads have budgeted \$31,175,370 (about 20% more than in 1961) for additions and betterments to their communications facilities during 1962. Top items on the '62 shopping list are microwave and railroad radio. According to the latest information received in a Railway Signaling and Communications survey, spending in 1962 compared to last year shapes up this way: 19 railroads plan to spend more money for communications in 1962. Their capital budgets total \$15,-282,800. The 18 roads planning to spend the same as last year indicated budget figures totaling \$14,607,170. Those 15 roads planning to spend less in 1962 than in 1961, listed a total of \$1,285,400 for capital expenditures.

Bulk handling of data receives top attention on six roads that plan to install microwave systems. While two roads give no mileage figures, four others report an intent to install 1,740 mile of microwave. The prime function, the roads report, is to handle data transmission and increase their direct distance dialing systems for better telephone service. While only 10 railroads stated specifically that they would add carrier equipment to their existing data and telephone systems, the majority of the 49 roads reporting indicated that general expansions would be made to their communications plants.

Interest in this bulk communications area was indicated by American Telephone & Telegraph Co., which introduced its Telpak tariff hoping to compete with private microwave systems. In recent testimony at the Federal Communications Commission's investigation of the Telpak tariff, AT&T Vice-President John J. Scanlon made these comments as to the question of a realistic choice between common carrier [telephone company] service and a private microwave system:

"It must be observed that Telpak is a common carrier service offering, with uniform rates for all. As such, it can't parallel in all respects the features of a privately provided micro-

• Digitized by Google

Train & Yard Radio Installed During 1961

Railroad	Mobile	Base	Walkie- talkie
ALASKA	1 MW	9 R	15
AGS	1 A		
ATGSF	171 L, 25 C,	30 R, 2 Y	78
	31 MW, 44 A		
ACL	24 C, 4 A	3 R, 3 Y	36
360	8 L, 3 MW	2 R, 1 Y.	14
BGM	4 L, 7 MW,	7 R, 2 Y	2
TAID	2 A, 5 T		
NR	20 L	3 R	
PR	32 L, 5 A 6 MW, 1 A		
CofGa		1 R	
NJ SO	11 L, 2 MW, 2 A	3 R	
GO	21.76	1 R	
GIM	2 L, 7 C		2
GNW	68 L, 25 C	3 Y	27
GWI	00 L 15 C		2
BGQ	88 L, 15 C		5
MStPGP	10 A 5 L	1 Y	
CRIGP	2 A	4 R	
	2 L, 30 L*		
CTA		1 R*	
Clinchfield	8 MW, 8 T	-	
OGRGW	4 L, 28 C, 6 A	1 R	
OMGIR	3 MW, 1 A	1 R	34
JGE	8 L, 3 A, 17 T	4 Y	34
-L	4 L, 23 MW	2 R	
EC	10 A	17 R	10
GGF	11 L, 4 C 14 C, 2 MW, 3 A	13 R	10
SN	2 A	5 R	
CBGW	1L	3 R	-
CMGO	3 A	34	6 4
C T	2L		
kcs		2 R	\equiv
(OFC	1 MW	2 1	
SGI	2 A		\equiv
GN	8L, 1 A	3 Y	15
ЛКТ	7 L, 11 C	3 R	
NYC	24 L, 17 C,	5 R, 8 Y	129
	5 MW, 4 A	21401	123
GLE	40 L	2 R	
NGW		3 Y	17
NP	43 L, 6 C, 1 A	8 R	4
RR	15 L, 3 A	6 R, 4 Y, 1 R*	12
DG	2 MW, 3 A	2 R	
HL-SF	5 A	3 Y	8
AL	50 L, 5 A	31 R	States and
OU	1 A	18 R, 3 Y	3
P	14 L, 5 C, 85 MW	26 R, 4 Y	15
	69 A, 48 T		
PS	5 C		
GP		2 R	
INION	35 L	5 Y	7
JP	11 A	2 Y	8
VM	10 L, 1 A		
NP	2 A	2 R	
Totals	1,367	265	463

* Inductive carrier.

L = Locomotives, 687 space radio 30 inductive carrier

C = Cabooses, 186

MW = Maintenance of way equipment, 179

A = Au'omobiles, 207 T = Trucks, 78

R = Road base stations, 212 space radio

2 inductive carrier

Y = Yard base stations, 51

(Continued from page 17)

wave system. The latter essentially represents the provision of physica facilities with which generally comparable communications functions may be performed.

"The cost of private microwave sys tems turns heavily on the circum stances of each individual user's needs The choice by an individual user a between Telpak and a privately pro vided system is likely to turn, there fore, on his individual appraisal of a great many considerations.

"But as far as cost alone is con cerned, however, it is obvious tha since the common carrier offering must be designed to meet average con ditions, there will be an economibias in favor of private microwave in those instances where conditions of ter rain, the availability of customer owned buildings for antenna sites, the possibility of employing existing per sonnel for the operation of a privatsystem, etc., tend to make the privatsystem appear the less costly."

Railroad radio receives prime atten tion from several roads faced with the Federal Communications Commis sion's November 1, 1963, deadline fo operation of split-channel or narrow band radio. Several of the 21 roads re porting, said that major radio replace ment programs are budgeted for thi year. While radio equipment pur chased during the last three to fiv years will operate on the narrow band required by the FCC or can easily b converted, many railroads have olde equipment which cannot be converted All radios that can't be converted must be replaced with new narrow band equipment. Several roads mus replace multi-hundreds of radios be fore the FCC's 1963 deadline. At this early date, the survey results show onl 277 radio purchases in 1962 budget

Survey returns covering other com munications facilities such as pollines, telephone exchanges and louc speaker systems are too sketchy to be c much value. However, most reportin roads indicated that pole line reconstruction would continue at abou previous levels of activity. A few rai roads reported cable plant replace ments, but no specific information wa presented.

Most replies indicated that budgete items would be fulfilled. One corr munications officer said: "We'll b busier than ever in the coming year. Another reported that a significant riin carloadings on his road would "le us cut down the backlog of budge items that have fallen under the 196 economy axe." One man expressed the opinion that the reduction in capitexpenditures on his road would enabhim to work off some deferred mainter nance, especially on his pole lines. RS

RAILWAY SIGNALING and COMMUNICATION