1959

COMMUNICATIONS

Signaling Moderate During 1958

SIGNAL CONSTRUCTION in 1958 ran at 79 per cent of the 1957 rate, with 5,929 units installed in 1958, as compared to the 7,549 units installed the previous year. The decline was across the board except for automatic interlockings and automatic block signaling, which showed increases. There are good reasons for viewing the coming year optimistically. In addition to the general economic recovery for all business and industry, railroad revenues are showing an upturn. The AAR announced that railroad revenues for October 1958 have exceeded those for any month since October 1956. These signs of greater revenue ahead, plus the economic advantages of signaling systems, should spur signal construction to resume its high rate

Good Year Ahead

Capital expenditures for signaling will be greater next year compared to last year, according to a survey conducted by Railway Signaling and Communications. Eighteen roads reported they plan to spend \$44,812,000 for signal construction during 1959. Of this total, the New York City Transit Authority plans to spend \$16,100,000 for signal systemmodernization. Twentytwo roads compared expenditures planned for 1959 with the previous year. Of these, 45 per cent plan to spend more in 1959, and 23 per cent will spend about the same amount. Major work to be undertaken includes 973 miles of centralized traffic control, three rearder classification yards and nany automatic highway crossing protection installaions.

1958—The year of the big economy drive saw signal construction take a small drop, but automatic interlockings topped the previous year. This elimination of levermen may save a railroad as much as \$23,500 for each plant every year.

1959—Signal construction should be back to its previous level of 7,000 units. Construction of several modern retarder classification yards is just getting under way, as are extensive centralized traffic control projects.

this year, and for the next few years. Major economic advantages of signal systems are: (1) more efficient utilization of locomotives; (2) increased track capacity; (3) reduced operating expenses; (4) amortize themselves in about five years or less; and (5) annual savings long after they are paid for.

Over 1,000 Miles of CTC

Centralized traffic control was installed on over 1,000 miles of road during 1958. Although most roads installed CTC on single track, several roads equipped lengthy sections of double track with CTC. Crossovers are located three to five

INSTALLATIONS	COMPLETED	1956-1958

	1958	1957	1950
Automatic block signals	493	423	864
Centralized traffic control			
Power switch machines	458	586	819
Lever controlled signals	1,116	1,454	1,948
Intermediate signals	671	1,030	1,453
Classification yards			
Car retarders	44	61	69
Power switch machines	248	383	254
Highway crossing protection			
New installations, gates and			
flashers	1,380	1,630	1,320
Interlockings			
Signals and switches installed			
(excludion outomatic plants)	999	1.417	1 303
Signals and switches installed		.,	.,
at new and rebuilt auto-			
matic plants	259	171	269
Spring Switches			
Spring buffer mechanisms	80	127	147
With facing point locks	52	59	41
Signals at spring switches	129	208	268
Totals	5,929	7,549	8,755

miles or more apart to provide flexibility in making meets and passes. During 1958 the Santa Fe installed traffic control on 25 miles of double-track main line in Kansas. In the heavy-traffic territory between Detroit and Plymouth, Mich., the Chesapeake & Ohio installed CTC on 17 miles of double-track mainline. The Delaware & Hudson and the Virginian also installed traffic control on 11-mile and 19mile sections of double track, respectively.

A special combination of singletrack and two-track CTC is used by the Southern. They recently converted 150 miles of double-track mainline to alternate sections of single-track and two-track CTC. The two-track sections range from five to seven miles in length, usually with a double crossover at the midpoint. The single-track sections are about the same length. All tracks are signaled for either direction running. There are no passing sidings, so that all meets and passes are made on sections of two-track. In one area, 14 miles of both main tracks were left in place through an industrial area. Double crossovers are spaced at three locations. This arrangement allows an industry switch-run to work either main and leave room for other trains to get through without stopping. It also permits the industry switcher to work without clearing the main for through trains (RS&C, December 1958, page 28).

provide either-direction running on both main tracks.

natic retarder clasot only reduce the assifying cars, but ves in about five ing operating extern road replaced a flat switching yard with a modern gravity-type retarder yard with automatic switching and automatic $\mathbf{a}\mathbf{n}$ tal

spring switches installed in 1958						
AT&SF	5.		15			
840	1		1			
88.M	12	10	21			
CP	2	2	6			
C&NW	2	8	20			
CRI&P	1	1	3			

6 7

5 2

11

6

11

1

80

27

4

10

--

2

52

savings long	Modern autom
investment is	sification yards n
August 1958,	time spent in cla
0	pay for themsel
ied or conven-	years by reduci
several roads	penses. One west
novo mainlino	a flat switching y

GN

ic Li

MKT

NYC

N&W

sou

TANO

T&P

TH&B Virginian

Wabash

Totals

wM

SP

NO&NE

traffic lines with the thought that modified CTC would pay for itself and produce annual after the capital j amortized (RS&C,

page 23). Using either modifi tional traffic control, have been able to remove mainline trackage when converting to CTC. The Louisville & Nashville (RS&C, March 1958, page 21) and the Maine Central (RS&C, January 1958, page 19) converted doubletrack mainline to single-track CTC with sidings. The Milwaukee Road recently converted a 27-mile section of two-track CTC to single-track CTC between Collins and Madrid, Iowa, on their Chicago-Omaha mainline (RS&C, February 1958, page 21).

The New York Central has reduced its mainline between Buffalo and Cleveland from four tracks to two with traffic control on the remaining two tracks. They have resumed work on the \$5 million project of installing traffic control on 145 miles of road between Buffalo and Syracuse, N.Y. Here again, the four-track mainline will be converted to two-tracks with CTC to

Relirood & Location	Miles	Power Switches	Lever Controlled Signals	Auto- matic Signals	Mir	Reilroed & Location	Miles	Power Switches	Lever Controlled Signals	Auto- matic Signals	
ATASE						GHLO					
East Shapton-West Shapton, Jawa	2.5 D			4	Union	Mumburbon III					
Gardner-West Ottawa, Kan	25.8 D	11	11	32	Union		1.5 \$	• •	4		GIS
Sectore and Ter	11 4 5	ij		~	Linion						
ACI		•	,	•	Onion	Anchorage-Latonia, Ky	91.9 5	14	42	56	GR
Wayness Falletan Ca	24.1.6	•	20	21	Hataa	MP					
waycros-rollston, Ga	34.1 3		20	21	Union	Osawatamie, Kan	1.3 \$	i 4	4		GR
North Croom-Vitis, Pla	24.4 3		31	4	Union	NYC					
BGM		•		-		Post Road-Smith Bridge, NY	4.9 5	2	4	2	GR
Willows bast-Westford, Mass	4.6 5	2	•	2	GKS	Jackson, Mich-Elkhart, Ind	97.3 S	13	37	54	GR
Ayer-Willows, Mass	1.9 D	2	2	2	GRS	NYNH&H					
North Beverly-Newburyport, Mass	14.3 5	2	12	6	GRS	Maybrook-Poughkeepsie, NY	23.4 S	6	15	19	GR
Concord-Westboro, NH	68.8 S	8	36	24	GRS	N&W					
North Adams, Mass	0.8 5	1	3	1	GRS	Bonsack-Roanake, Va	5.8 C)			
CN							2.2 5	40	57		منعلا
Oakville, Ont	4.8 D	18	16	4	GRS	Same Siding-Fast Norton Va	95.2 5	17	AR	51	منطا
Winnipeg, Man	1.2 D	12	16		GRS	Hurricone Ict-Carbo Va	405		~	2	1100
West End, Winnipeg, Man	8.6 5	32	40	3	GRS		4.0 3	•	v	•	0100
	6.5 D			-	•	Martin Character Mark	205		•		~ •
Pacific ist Man		4	4		GRS	marnn-stampede, wash	3.0 3	•	*		Gĸ
St James Let Man	585	Â	15	4	G PS	PKK		•••	~	•	
	5.6 5	v			•••	Sunbury-Milton, Pa	18.7 5	14	2/	8	Unio
Williams Teacher Ont	60.2 6	10	24	24		Pale					
Witkinson-Trenson, Onr	30.3 3	10		24	G KJ	Blacks Run-Wampum, Pa	12.2 C)			
	7 4 5						6.0 S		*** ·	24	Unio
Minton-Sandstone, W Va	7.8 0		<u></u>	12	Union	QNS&L		1	2	1	GR
Plymouth-Dearborn, Mich	17.0 D	33	38	12	GKS	SP					
CIEQ						Moor-Valley Pass, Nev	22.2 S	4	22	14	Unio
Burlington, Iowa	2.4 D	15	30		Union	UP					
Lavergne-Congress Park, III	4.4 T	12	Z3	18	GRS	Menaken-Silver Lake, Kan	6.0 S	4	16	2	Unio
Galesburg, III	0.3 \$	4	2		Union	Mountain Home, Ida-Huntington,					
CMStP&P						Ore	138.8 S	49	170	86	Unio
Collins-Madrid, Iowa	27.0 S	6	12	8	Union	VGN					
D&H						Elmore-Princeton, W Va	15.3 S				
Starrucca-Carbondale, Pa	15.5 S	8	20	22	GRS		19.0 0	21	63	17	GR
	11.5 D					WAR					•••
D&RGW						Barklay-Robertson Mo	255	2	10		l lata
Kohe-Avon, Colo	47.7 S	13	48	20	GRS	Delaht Leasement Led	10.05	· 3	10	14	Unio
DMAIR					• • •	The second walk and a second	17.0 3	•	15	14	Unio
Augumentik Mine	X 9 C	4	22	3	Union	ioleas tara-walbridge Jct, Ohio	1.0 3				Unio
	.,, ,	5			0.401	.					
Hitherd Color Ohio	245			2	Liniar	Single track	963.7	458	1,116	671	
	3,4 3			4	Onion	Double track	118.4				
		~			~ * *	Three track	4.4				
Des Lacs-Wheelock, ND	6 5.0 S	Ð	88	04	GK2	Track miles	1,213.7				
						Road miles	1,086.5				

A form of modified CTC, with a spring switch at one end of a siding and a power switch at the other, was installed by the Boston & Maine between Concord and Westboro, N.H., 69 miles. This form of traffic control is gaining favor as a means to increase track capacity, reduce operating expenses, and do it at a cost not much more than that for automatic block signaling. Many roads are re-examining their light-

POWER CLASSIFICATION YARD PROJECTS COMPLETED IN 1958

		No. of	No. of	
Railroad & I	No. of	Power	Class	
Location I	Retarders	Switches	Tracks	Mfr
C&O				
Toledo, Ohio	2	9	coal dumping	Union
Clinchfield				
Dante, Va	14	8	coai dumping	Union
L&N				
Boyles, Ala	6	39	40	Urion
Orinoco Mining				
Puerto Ordaz,				
Venezuela	1		ore dumping	Union
PRR				
Conway, Pa	1	1		Union
P&LE				
Youngstown, Oi	nio 6	91	35	Union
RF&P				
Alexandria, Va	3	9	10	Union
SP				
Los Angeles, Co	alif –	18		GRS
StL-SF				
Tulsa, Okla	5	4 0	40	GRS
SILSW				
Pine Bluff, Ark	5	29	28	Union
US Steel				
Saxonburg, Pa	1	4	ore dumping	Union
•		240	160	
lotais	44	248	133	

RAILWAY SIGNALING and COMMUNICATIONS

11 ------

2

129

Digitized by Google

cost. The Boston & Maine estimates that its proposed new retarder yard for Montague, Mass., will cost \$18.5 million, but it will provide savings of approximately \$4.5 million annually.

New modern automatic yards often replace several old, flat switching yards, and reduce the amount of switching required at other yards. Robert R. Young yard at Elkhart, Ind., on the New York Central, replaced 12 yards and considerably reduced switching at others (RS&C, March 1958, page 28). Cicero yard on the Burlington near Chicago also reduced damage

INTERLOCKINGS REBUILT IN 1958 (Except Automatic)

				SWITCH
Roilrood &	Home	Power		trols
Location	Signals	Switches	Mfr	1013
Alash				saving
Emporia, Kan	ļ	I	Union	Nov
Milano, Tex	•		GKS	1464
Sealy Tex	6		GKS	promi
BEAA	,		GKS	noote
Fort Somenville Mar	4		11	pects
Somerville Mass	2	-	Union	
Aver Moss	ī	1	Union	AUTOMA
	-		AGRS	
Boston, Mass	1		Union	
CN				Railroads
Brantford, Ont	10	6	Union	BRC
			& GRS	Chicago
St Lambert, Que	2	1	GRS	88.M
CP				Concord
Ballantyne, Que	17	15	Union	North Be
Caughnawago, Que	25	20	Union	Newbury
CENW		_		Salem, À
East Clinton, III		2	GRS	Boston, I
Chicago, III	4	2	GRS	Salem, A
CMSIPEP	-			Everett,
Hastings, Minn	3		Union	Lynn, M
Offeen Island, Iowa	2	1	Union	Mechani
Buffele NY		7	11-1	CP
Millburg NI			Union	Woodmar
DLRGW		•	Union	La Proi
Japa Colo		1	GRS	English R
Gilluly Umh	2		GRS	Curle, S
Kyune, Utah		1	GRS	C&NW
Grand Jct. Colo		2	GRS	Rosemere
DMAIR		-		Oshkosh,
Toconite Jct, Minn	6	2	Union	Marcy-C
EJ&E				CIA
Hobart, Ind	3	2	GRS	Chicago
GN				
St Paul, Minn	62	36	GRS	DLaw
GM&O				Buffalo,
Corwith, III	4	20	GRS	
KCT				E LE E
Kansas City, Mo	3	3	Union	EJGE
u				MEC .
Jamaica, NY	5	4	Union	New Gir
LEN K	e	£	C B C	Ma
Anchorage, Ky	5	2	GKS	Witcome
C three last	e		~ ~ ~	Mille
Gibson, Ind	3	0	GKS	MAT A
HICHA - New Tolk	54	17	Union	Roodway
72nd St	24	13	Union	Sta-Bos
Concourse	1		GRS	NYCTA
Jerome Ave	3	1	Union	8'way-71
DeKalb Ave	13	4	GRS	De Kolb
Hudson Terminal	6	4	GRS	N&W
NYNH&H				Saltville
Branford, Conn	6	6	Union	Toms Cre
N&W				Russell C
Roanake, Va	1		Union	Dumps C
PRR				NP
Baden, Pa	7	6	Union	Vader-K
Red Bank, Pa	4	1	Union	SP&S
Sunbury, Pa	21	11	Union	Martinda
PALE				UP
West Aliquippa, Pa	61	70	Union	Portland-
Toungstown, Ohio	14	15	Union	-
Melana T P		2	Linte -	Sin
mononoy tunnel, ro	<u> </u>		Union	Dou -
Totals	422	297		Tote T- A

to cars and lading by 85 per cent, will classify cars 3½ hours faster than formerly and will provide savings equal to 10 per cent on the \$4 million investment, after taxes (RS&C, July 1958, page 24).

There is also help for older gravity yards, with manual retarder controls. A mobile laboratory has been developed (see article in this issue) that enables engineers to make complete measurements on cars moving into classification tracks. Using these measurements, a computer in the lab truck computes rolling characteristics of the cars. From this data, an engineering study is made for upgrading the yard, such as adding automatic ritching, automatic retarder conor both, and indicating the gs that will result.

New yard construction looks promising for 1959. The B&M expects to begin construction of

AUTOMATIC BLOCK SIGNALING INSTALLED IN 1958

Railroads	Miles	Signals	Mfr
BRC	120	2	
REM	1.20	4	/
Concord NH	0.3 D	1	GRS
North Beverly, Moss	1.10	i	GRS
Newburyport, Mass	1.2 D	i	GRS
Salem, Mass	0.4 D	2	GRS
Boston, Mass	0.3 D	1	Union
Salem, Mass	0.3 D	1	Union
Everett, Mass	0.2 D	1	Union
Lynn, Mass	0.3 D	1	Union
Mechanicville, NY	Wheel check	ker 1	
CP			
Woodman-Portage			
La Prairie, Man	48.0 D	34	Union
English River, Ont	2.5 D	1	Union
Curle, Sask	2.0 D	1	Union
CANW		_	
Rosemere-Manitowoc, W	is 6.0 S	7	GRS
Oshkosh, Wis	10.0 S	14	GRS
Marcy-Clymon, Wis	33.0 5	30	GRS
CTA			
Chicago	0.25		
	12.0 D	9/	GRS
	100		
Buffalo, NT	1.90	•	Union
New Horriord, NT	1.0 5	2	Union
Flymouth, Fa	0.70		Union
EJGE	7 4 5	12	C • 4
Waukegan-Kondout, III	7.43	12	GKS
Mec New Glavester-Wiethr			
Ma	7 , 30 8 2	33	GRS
Wisconset-Wisslows	30.0 5		0
Mills Me	16.95	17	GRS
MAT A	10.7 5		0.0
Brondway Sta-Charles			
Sta-Boston	1.9 D	29	Union
NYCTA			
B'way-7th Ave Line	5.0 D	126	Union
De Kolb Ave	0.45	9	GRS
N&W			
Saltville Branch	1.0 S	2	Union
Toms Creek Branch	0.25	1	Union
Russell Creek Branch	0.3 \$	1	Union
Dumps Creek Branch	4.0 5	2	Union
NP			
Vader-Kalama, Wash	29.0 D	40	GRS
SP&S			
Martindale-Levey, Wash	5.0 5	6	GRS
UP			
Portland-Fir, Ore	5.0 S	12	Union
.		7.00	
Single track	121.2	493	
Double track	108.3		
lotal track miles	337.8		
lotal road miles	224.5		

Montague yard by the end of this year. The Canadian National has begun construction on three new retarder yards—at Moncton, N.B.; at Montreal, Que.; and at Winnipeg, Man. The Missouri Pacific is working on its Neff yard at Kansas City. Several other railroads have yards under construction or ready to go.

Automatic Interiockings Gain

In the economy drive of 1958, many roads "found" crossings with others where an automatic interlocking could do the work formerly required of a leverman around the clock. Such a saving for one plant could run over \$20,000 annually. This figure is based on the 40-hour week and includes paid holidays, vacation, retirement, insurance, etc. The drive to eliminate attended interlockings at railroad crossings will continue. One road is near completion of a program to provide automatic interlockings at all such railroad crossings.

Automatic control of switches at interlockings is now in service on the Flushing line of the New York City Transit Authority (RS&C, August 1958, page 15). Also included

NEW INTERLOCKINGS INSTALLED IN 1958 (Other Than Automatic)

Railroad &	Home	Power	
Location	Signals	Switches	Mfr
ACL			
Ruskin, Fla	2	1	Union
BLO			
Patterson Creek, W Va	19	28	GRS
E Columbus, O	7	5	GRS
BRC			
Chicago, III	9	13	Union
B&M			
Salem, Mass	2	1	GRS
CP			
Portage La Prairie, Man	5	3	GRS
cv Č			
St Albans, Vt	4	2	GRS
C&O			
Roceland Jct., Ky	18	16	Union
Losontville, Ind	5	1	Union
CANW	-		
Cedar Rapids, In	7	2	GRS
CALC IN THE CALC		-	
Downers Grove III	12 1	8	GRS
CPIAP	••	•	••
Amorillo Tex	2	-	Union
West Liberty In	15	5	Union
DIAW		•	00
Sisteford Pa	3	1	Union
	5	•	00.
Nubbard Ohio	4	3	Union
Coler Ohio	3	1	Union
NYC	•	•	0
Surgeone NY	2	1	GRS
Sand Cut Ohio	4	, ,	6.85
	-	4	0.5
Caston Ohio	7		Linion
canon, onio	•	•	0111011
Jr Toyum Ore	2	,	1 bion
LID	3	•	Union
Gread Island Nah	11	4	
Chaurana Mura		0	Union
Creyenne, wyo	7	2	Union
NOWTINS, TRYO	'	•	Union
		2	11-1
Delphi, Ind	•	2	Union
Teaste	777	-112-	
IOTOIS	104	1 10	

as part of this project is a system of train identification. Although most railroads do not have the traf-

> HIGHWAY-RAILROAD GRADE CROSSING PROTECTION INSTALLED IN 1958

> > Number of Crossings Equipped

			•••••			on the trai
	Flashing	Gates	Source	is of Fi	unds .	as the trai
	Light	and		Public		
Railroad	Signals	Flashers	Railroad	Funds	Joint	
			10		24	AUTOMATIC
ATEST	40	13	12	Å	34	
MO	17	6	5	5	13	Rollmod &
BÅR.	5				5	Location
MALE		1			1	AT&SF
86.M	9	13	16	5	1	Monica, III - R
CN	85	17		2	100	Topeka, Kan -
CP	50	18		4	64	ACL Emposis Vala
CG	3	2				Samaset, Fla -
	13	2	Â	6	21	Palmetto, Fla
CAFI		2		ĩ	ī	Trilby, Fla – N
CENW	60	56	78	3	35	BLO
C&WI		1	1			Hammond, Ind
BRC	1	1	1		1	CN MR 4 8 Genel
CB&Q	15	11	3	1	22	C&NW
CGW	9		1	2	6	Marshalltown,
CMSHP&P	24	2	8	2	19	Beverly, Iowa
CRIAP	24	3	4	4	19	Cedar River Br
CSSASE	- î	2	3			CRI&P
CTA		3	3			
Clinchfield	1	1	1		1	Chicago - N
D&H	5	18	18		5	
DARGW	4	2	3	1	2	Chicago - N
DIGI	3	_		3	2	
ELAE	2	2	1	1	2	DL&W
ERIE	5	8	ż	i	5	Plymouth, Pa -
FEC	3	18	11	10		Viminia, Mina
PW&D	2	2		3	1	ERIE
GTW	5				5	Delong, Ind - I
GN	12	8	3	5	12	
CHAR					1	MTA - Boston
GMGU	24		3	J.	21	Haymarket Sta
IT I	1		_		-1	Park sta - K Baston Sta - R
JCL	2	2	4			M&StL
KCS	6		2		4	Mason City, lo
LANE	1				1	MKT
U	9	17	11		15	Moran, Kan - I
	3	2			-	Ft Scott, Kan -
MEC	۵ ۸	-	2		3	Durant Okla -
MKT	9		ģ		_	Sealy, Tex - R
MP	47	5	22	2	28	Waxahachie, T
Monon	2	5	5	1	1	Ft Worth, Tex -
NYC	66	18	45	7	32	MP
NYC&SH	12	3	3		12	Tioga, La - N
NINIGA	2	2	0	1		Fast Chatham
NP	8	5	2		10	Monsfield, III -
ON	2	-	-		2	Losantville, Inc
PE	14		1	11	2	NYCESIL
PGE	1				1	Bluffion, Ohio
PRR	29	20	21	5	23	Hobart, Ind - R
r-KSL	ļ		1			NEW
Reading	1	~				Cincinneti Oh
StL-SF	27		5	1	21	NP
SHLSW	5		2		3	Durant, Mont -
SAL	21	10	5	2	24	PRR
500	20	4	3		21	Kalamazoo, Mi
SOU	14	!	4	!	10	Wosepi, Mich -
AGS CNOTE	2		2			StL-SF
GS&F	i		i			Columbus, Kan
NOANE	i		i			
SP	82	12	ġ	26	59	Sikeston, Mo -
SP&S	2				2	Carroliton, Tex
TC	2				2	StLSW Each and Art
TRASEL	2	I	1		2	rordyce, Ark -
IGNU TEP	18		3	1	11	SAL
TPAW				i		Town Creek, SC
TH&B	2	-	-	2		SOUTHERN
UP	21	3	1	1	22	Greenville, Flo
Virginian	-	3			3	WABASH
Wabash	8	13	8		13	Cecil, Ohio -
WM	4	-,	3	1	-	
mr.	0	•	1	•	3	
_ ·						
Tatala	641	410	122	147	810	M Maria B

fic density of this rapid transit system, some railroad men are considering automatic control of switches at outlying interlockings or junctions. A local freight or "turn" could be equipped with the inert coil for train identification so that as the train passes a wayside re-

AUTOMATIC INTERLOCKINGS INSTALLED OR REBUILT IN 1958

Railroad &	Home	
ATASE	Signals	
Monica, III - R	6	Union
Topeka, Kan - R	5	Union
ACL		
Emporia, Va - N Semanat Ela - N	•	Union
Palmetto, Fla - N	4	Union
Trilby, Fla - N	6	Union
840		
Hammond, Ind - N	8	GRS
CN MP 4.8 Govel Subd, Sask - R	4	Union
C&NW		
Marshalltown, Iowa – R	8	GRS
Cedar River Bridge - R	4	GRS
CRI&P	•	•
Carrollton, Tex - N	6	Union
CTA Chianna - N	19	
Chicago - N	8*	GKS
Chicago - N	8	GRS
	2*	
DL&W		11-1
DMALIR	•	Union
Virginia, Minn - N	6	Union
ERIE		
Delong, Ind - N	5	Union
MTA - Roston	4-	
Haymarket Sta - R	1*	Union
Park Sta – R	1•	Union
Boston Sta - R	1+	Union
MESTL Merce City Jawa - N	4	Ibian
MKT	Ū	Union
Moran, Kan - R	4	
Ft Scott, Kan – R	5	
Vinita, Okla – R	6	
Seely Tex - P	8	
Waxahachie, Tex - R	4	
Ft Worth, Tex - R	6	
MP	-	
NYC	2	GKS
East Chatham, NY - N	4	GRS
Mansfield, III - R	4	GRS
Losantville, Ind – R	4	GRS
NYCASIL	•	
Bluttion, Ohlo - K Mohart Ind - P	3	Union
hobart, ina - k	3.	Union
N&W	-	
Cincinnati, Ohio - N	8	Union
NF Durant Mont - N	3	GRS
PRR	•	• • •
Kalamazoo, Mich - N	9	Union
Wasepi, Mich - R	8	Union
Altamont, HI - K	3	Union
Columbus, Kan - R	6	Union
•	1*	
Sikeston, Mo - R	4	Union
Corroliton, lex - K	0	Union
Forduce, Ark - N	5	Union
	1•	
SAL		
Town Creek, SC - R	4	Union
Greenville, Fla - N	4	
WABASH		
Cecil, Ohio - N	4	Union
Signals	240	
* Switch machine	n 19	
N-New R-Rebuilt	,	

ceiver, controls would be initiated to operate the junction switch and clear signals. Thus the local train would automatically line its route onto the branch line. The Erie installed a train identification system in 1952 (RS&C, January 1953, page 54).

The increase in automatic block signaling for 1958 was due to the Chicago Transit Authority constructing a new rapid transit line in the Congress Street Expressway. They installed 97 signals on 12 miles of double track and 0.2 miles of single track. The New York City Transit Authority helped boost ABS figures by installing 126 block signals on five miles of double track on the Broadway-Seventh Avenue line.

Automatic train stop equipment was installed on 222 rapid transit cars by the Chicago Transit Authority during 1958, the only mobile equipment installation reported. They also installed wayside trips and equipment on the 12.2mile Congress Street Expressway line. Similar installations were made on 1.9 miles of double track by the Metropolitan Transit Authority in Boston, and on five miles of double track and 0.4 miles of single track by the New York City Transit Authority.

The only cab signals reported for 1958 were at Gateway yard on the Pittsburgh & Lake Erie at Youngstown, Ohio. Four hump engines were equipped with four-aspect cab signals.

Crossing Protection is Steady

Automatic highway crossing protection installations continued at a good pace during 1958. Of the installations made, 59 per cent were paid for by railroad and public funds, and 30 per cent were paid for by the railroad alone. With the yearly increase in motor vehicles. it is more important than ever to have automatic protection not only to protect vehicular traffic, but to expedite its flow. Modern protection with automatically controlled flashing-light signals and short-arm gates provides uniform and improved protection around the clock Wages for a crossing watchman, including vacation, insurance, etc., based on the 40-hour week, can run (Continued on page 22)

Digitized by Google

INTERCOMMUNICATIONS SYSTEMS INSTALLED IN 1958

		Two-Way	Paging				
Reilrood	Location	Speakers	Speakers	Railroad	Location	Telephones	Loudspeakers
AT&SF	Corwith, III	36		AT&SF	Corwith, III	13	22
	•	35		CN	Winnipeg, Man	15	
86.0	Baltimore, Md	9	17		Mantreal, Que	50	168
CN	Toronto, Ont	40	4		Toronto, Ont	22	
		40	6		Quebec, Que	50	
	Quebec, Que	85		CofG	Industry, Ga		7
	Montreal, Que	20		C&O	Toledo, Ohio	13	3
C&O	Toledo, Ohio	18	11		Russell, Ky		12
	Russell, Ky	57	42		Columbus, Ohio		6
	Walbridge, Ohio	2	6		Huntington, W Va		3
C&EI	Wansford, Ind	18			Peru, Ind	5	
C&WI					Richmond, Va		4
BRC	Chicago, III	9		୯୫&ଭ	Galesburg, III		6
CB&Q		10	4		Berwyn, Ill		40*
CGW	Council Bluffs, Iowa	19		CMStP&P	St Paul, Minn		6
CMSIP&P	Rondout, ill	3			Chicago, Ili	6	6
	Bensenville, Ill	13	4	CRI&P	Chicago, Ill		6
	Galewood, III	30		DL&W	Hoboken, NJ		10
	Chicago, III	10	4	D&RGW	Salt Lake City, Utah		6
	Davis Jct, III		3		Denver, Colo	15	
DL&W	Hoboken, NJ		6	ERIE	New York, NY	6	14
EJ&E	East Joliet, Ili	12	1		Hoboken, NJ	9	10
	Gary, Ind	30	9	GN	St Cloud, Minn		4
IC	Memphis, Tenn		6		Grand Forks, ND		13
JICo	Jacksonville , Fla	20	4		Minot, ND		15
L&NE	Bath, Pa		1		Superior, Wis		9
L&N	Boyles, Ala	34	54		St Paul, Minn		22
NYC	Syracuse, NY		2	L&N	Latonia, Ky		17
	Minoa, NY		3		Louisville, Ky		6
	Toledo, Ohio	6	4				4
			10			8	
P&LE	Youngstown, Ohio	115	40	MP	Little Rock, Ark		25
NP	Seattle, Wash	8		NYC	New York, NY		23
	Auburn, Wash	10	1				56
	Tacoma, Wash	1	1		Weehawken, NJ		14
PRR	Enola, Pa		22		Buffalo, NY	4*	35*
	Conway, Pa	12	3	NP	Seattle, Wash		3
StL-SF	Tulsa, Okla	45			Spokane, Wash		8
		11		QNS&L	Schefferville, Que	350	
			55	SIL-SF	Tulsa, Okla		-
		2		200	Lynchburg, Va		20
StLSW	Pine Bluff, Ark	160	24		Columbia, SC		26
SOU	Lynchburg, Va		2	SP&S	Vancouver, Wash		
	Atlanta, Ga	298	72	UP	Kansas City, Kon	55	25
CNO&T	PChattanooga, Tenn	2	8		Salt Lake City, Utal	h 29	13
NO&NE	New Orleans, La	4	4	WAB	Chicago, III		149*
SP				WM	Baltimore, Md		2
T&NO	Ennis, Texas	9	9				.
	San Antonio, Texas	5			iotois	680	841
UP	Omaha, Neb	2		*Freightl	house		
	Salina, Kan	1					
	Denver, Colo	6					1
	Las Vegas, Nev	2		pay to	or themselves i	in less f	han one
	Los Angeles, Calif	1		Vear	The Central	of Cor	raia in
WP	Oakland, Calif		7	ycai.		or Get	ngia ili-
	•			stalled	l centralized	chec	king in
	Totals	1,250	449	freigh	thousan in Ma	oon ond	Colum
		•	-	reign	mouses in Ma	con ano	i Coluin-

(RS&C, June 1958, page 22). All railroad radio will have to meet the new narrow-band requirements by November 1, 1963.

Intercommunications systems installed in offices, freighthouses and shops topped the previous year. Biggest gains were scored by the Quebec, North Shore & Labrador, which installed 350 railroad telephones. The Wabash opened a new freighthouse in Chicago with 149 loudspeakers such as pagers, talkbacks and portable talk-backs to be carried by freight handlers. The New York Central and the Burlington also installed centralized checking systems in freighthouses during 1958. At the P&LE freighthouse in Pittsburgh, the foreman carries a Dick Tracy radio transmitter, which he can use to "get in" on the paging system (RS&C, February 1958, page 24). Such systems often

22

00	Telephones	Loudepeakers	$(0, \dots, 1)$ $(0, \dots, 1, 1)$
			(Continuea from page 10)
6, III	13	22	
eg, Man	15		
al, Que	50	168	to \$19.000 annually. At this rate.
o, Ont	22		the series from systematic meter
c,Que	50		the savings from automatic protec-
y, Go		7	tion installed to replace watchmen
, Ohio	13	3	
, Ку		12	will pay for the new automatic pro-
bus, Ohio		6	tection within two years in many
gton, WVa		3	teetion within two years, in many
Ind	5		instances.
ond, Va		4	A system of electronic track cir.
yung, Ili		6	A system of electronic track ch-
n, III		40*	cuits for highway crossing protec-
l, Minn		6	tion installations has been devel
jo, Ili	6	6	tion instanations has been devel-
jo, ili		6	oped which eliminates the need for
en, NJ		10	
ake City, Utah		6	insulated joints. The Santa Fe made
r, Colo	15		an extensive test using the audio
York, NY	6	14	an extensive test using the autor
en, NJ	9	10	trequency track circuits (RS&C.

bus, Ga. These two installations

cost \$10,988 and saved \$26,067 an-

nually. At this rate, they paid for

themselves in five months (RS&C,

a healthy showing in 1958. Major

yards so equipped were at Atlanta,

Ga., on the Southern; at Youngs-

town, Ohio, on the Pittsburgh &

Lake Erie, and at Pine Bluff, Ark.,

on the St. Louis Southwestern.

Youngstown yard communications

are described in an article in this

issue. With at least eight retarder

classification yards under construc-

tion this year, yard loudspeaker

system installations should continue

and certainly should do as well

during 1959. Efficiency and econ-

omy, the true test of any capi'al

expenditure, aptly apply to the

modern communications systems.

Communications did well in 1958

at last year's rate.

Yard loudspeaker systems made

October 1958, page 32).

nstallations has been develwhich eliminates the need for ted joints. The Santa Fe made tensive test using the audio ency track circuits (RS&C, November 1958, page 32). Several other railroads have used this audio frequency circuit for the "island" or positive section at highway crossings. These circuits use current in the audio frequency range around 1 kc. It does not interfere with conventional signal track circuits. This new type circuit should be of interest to those railroads using welded rail or electric propulsion.

During 1958, hot box detectors were installed on several railroads (RS&C, September 1958, page 36). The New York Central is continuing its program of installing detectors on all mainlines. They have 32 detectors in service, and plan to install 20 more this year. Savings in inspection time are already apparent on one part of the railroad. The carmen inspect only those journals that have been "spotted" as abnormally hot by the detectors. Other roads follow a similar practice, resulting in less inspection time.

Expect to see more hot box detectors installed during this and following years. Not only do these detectors pinpoint hot boxes that, if not attended to, could cause a wreck, they reduce inspection time in yards and reduce delays to trains. The Reading estimates that by detecting a hot journal before it becomes a hot box, a saving of approximately \$300 per axle can be made when no wheel change is required.

Signal construction should resume its high level this year. The Transportation Act of 1958 should encourage capital improvements; and with virtually complete dieselization, the next area for substantial savings to the railroads is modern signal systems.

RAILWAY SIGNALING and COMMUNICATIONS

Digitized by Google

Signaling 1958-59