INTERSTATE CCMMERCE COMMISSION WASHINGMON

REPORT NO. 3437 BOUTHER: RAILWAY COMPANY IN RE ACCIDENT AT YOODSTOCK, ALA., ON NOVEMBER 25, 1951

SUMMARY

Date:

Rallroad:
Location:
Kind of accident:
Trains involved:
Train numbers:
Engine numbers:

Consist:
Speeds:
Operation:
Track:
Weather:
T1me:
Casualties:
Cause:

November 25, 1951
Southern
Woodstock, Ala.
Head-end collision
Passenger : Passenger
48
$\begin{array}{cc}\text { Diesel-electric } & : \begin{array}{c}\text { Diesel-electric } \\ \text { unit } 2923\end{array} \\ & 2801\end{array}$
8 cars
Standing
: 13 cars
: $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Sienal indications
Single; tangent; level
Clear
2:35 p. m.
17 killed; 68 injured
Fallure to operate north-bound train in accordance with signal indication

REPORT NO. 3437

IN THE MATTER OF MAKING ACCIDENT INVESTIGATICN REPORTS UTNDER THE ACCIDENT REMORTS ACT OF MAY 6, 1910. SOUTHERN RAILWAY COMPANY

January 16, 1952.

Accident at Woodstock, Ala., on November 25, 1951, caused by fallure to overats the north-bound train in accordance rith a gienal ircication.

1
REPORT OF TEE COMMISSION

PATTERSON, Comm16sioner:
On November 25, 1951, there was a head-end collisicn between two passenger trains on the Southern Railway at Woodstock, Ala., which resulted in the death of 15 vassonsers, 1 road foreman of engines and I train-service employee, and the injury of 52 passengers, 10 aining-car employeos, 1 passenger-traffic employee, and 5 train-service employees. This accident was investigated in conjunction with repiesentatives of the Alabama Public Service Commission.

Location of Acsident and Method of Operation

This accident occurred on that part of the Alabane.
Great Southern Division extending between Meridian, Nisn., and Birmingham, Ala., 152.4 miles. In the vicinity of the noint of accident this is a single-track line, over wich trains are operated by signal indications suoplenented by an inteniftent inductive automatic troin-stop system. At Woocs tock, Ala. 123.l miles north of Meridian, a ciaing 1. Gis ailes in lencth parallels the main track on the eest. The nowtil switch of this siding is 3,380 feet runth of the stajion. The accicent occurred on the main track at a point 101 feet north of the north siding-s.ritch. From the north there are, in succession, a tangent 2,885 feet in lengrh, a lobl curve to the rioht 1,301 feet, and a targent 124 noet to the roint of accidert gna 2,163 feet soutivard. From the north the prade is 0.71 percent descending 4.600 feet, tien there is a vertical curve 800 reet folloied by practicaliy level track 410 feet to the point of accident.

Controlled sicnal 75R at Kimbrell, the first station north of Woonstock, automatic signals 2673 and 1699, and controlled sienal 73R at woodstock, roverning south-bound movemente, are locatod, respectively, 6.45 miles, 4.34 riles. 1.79 milns nopth and 82 foet south of the point of accident, controlled sicnals 75R and 73R are of the two-unit searohlight tyoe. Automatic gignals lert and 1699 are of the one arm semapiore type. Controlled signal 7BLG, governing north bound movements fron the siding at Wondstock, is locatod east of the siding and 270.5 feet south of the north sidine-switch. This si. 2al is a onewnit dwarf searehlight tipe All controlled sicmals are continuously lirhted and all auvomatic signals ere aproach ligkted. The aspects involved in this investieation and their corresyonding indications and names are as follorv:

Stenal	Aspect	Indication	Name
75R	Green-overRed	PROCEED	CLEAR SIGNAL
1673	Vertical	PROCEED	CLEAR SIMEAL

73R Yellow-overRed

PRCCEMD, PREPARING	APPROACH
$T C ~ S I O P ~ A T ~ N E X T ~$	$S I G I A J ~$

SIGNAL TRAIN
EXCEEDING NEDIUM
SFEED NUST AT
ONCE REDUCE TO
THAT SPEED
73 LC Red STOP STOP SIGRLL
These sirnals form a part of a trarfic-control system extendiag becween Burstall and Tuscaloosa, Ala., located, respectively, 16.3 miles north and 26.1 miles south of Woodstock. This system was placed in service on October 10, 1951. The control macinine is located in the train dispatcher's office at Birmineham. It is equipped with levers to sontrol the pover-operated switches and controlled signals and to establish the direction of traffic. It also is equipped with rinjature lamps on the control panel to indicate when a siding, an $O S$ section or the track between adjacent os sections is occupled, when a controlled signal displays an aspect to proceed, then the position of a power-operated switch does not correspond with the position of 1 ts controllinc lever, when a control or indication code is being transmitted, and when a route is locked. A single-stroke bell is provided for audible indication or OS track occupancy. The OS eections extend between the controlled entering and leaving signals at time end of a aicing. Time, signal indication, switch indicotion, and routo locking are provided. The automatic train-stop system is arranced to initiate an automatic brake application at the full service ratc at e signal displaying a restrictive aspect. Each loconotive is equipped with a device by means of thich an automatic aprilcation of the braises may be forestalled bu the engineer. When a brake application is initiated by the train-stop system, the brakes cannot be released until a time interval of about 1 minute 10 seconcs has elapsed. If the brake valve is placed in lap position immediately after an autonatic application has occurred, the brove-pipe reduction is limited to 20 pounds. The train-stop inductor for signal ruLC is located 57.5 feet south of that signal.

This carrier's operating rules read in part as follows:

Yand Speed-A speed that vill permit stopping within are-half the range of vision.

Medium Speed.--Ono-half authorized soeed, at point involved, but not exceeding 30 miles per hour.

Slow Speed. --A speed not exceeding fifteen miles per hour.
35. All members of anfine and train crews must, when practicable, commansate to each other by its name the indication of each sifmel offecting the movement of their train or engine.
34. The following siknals will be used by flagmen: Day signols $\left\{\begin{array}{l}\text { A red flar, } \\ \text { Torpedoes and } \\ \text { Fusces. }\end{array}\right.$

99. When a train stops under circumstances in which it may be overtaisen by another train, the flacman must go back immediately with flarran's sipnals a sufficiont distance to insure full protection, * * * :

The front of the train must be protected immediately in the same way when necessary by the forward trainman, fincman, or other competent employe.
105. Unless otherwise provided, trains or engines using a siding or jard track must proceed at yard speed.

RULES GOVERNING OPPOSING AND FOLLONING MOVEMENT OF TRAINS BY BLOCK SIGNALS
261. On portions of the railway, and on designated tracks so specified on the time-table, trains will be governed by block simals whose indications rill supersede the superiority of trains for both opposing and following movements on the same track.

Timetable special instructions read in part as follors:
12. TRAIN MOVERENTS

* * *

(Rules 261 to 264)
Between Burstall and the south end of Tuscaloosa Siding, Mile 200.4, trains or en;ines will be governed by block and interlocking sirnals whose indications till supersede the superiority of trains for both opposing and following movements on the same track.

The maximum authorized speed for passenger trains mas 80 miles per hour.

Description of Accident

No. 48, a north-bound first-class passenger train, consisted of Diesel-eloctric unit 2923, one passenger-baggocco car, one coach, one lounge coach, three coaches, one dininio car and one tavern car, in the order named. All cars vere of lightroicht steel construction and were equipped with tichtlock coulors. This train departed from Tuscaloosa, the last onon office, at 2:01 p. m., 6 minutes late, passed signal l756, which inaicated Approach, passed signal 71L, at the south sicineswitch at Woodstock, which ināicated rostricting, entercd une sidines at Woodstock at the south switch and met First 47 , passed signal 7BLC, which indicated stop, trailed throuch tho north siding-switch at Woodstock whilo it was lincd for main track movement, and stopped on the main track with the front of the Diescl-electric unit 101 feet north of the switch. About 1 minute later it was struck by Second 47.

Second 47, a south-bmund first-class passenger train of the Loulsville and Nashville Railroad, consisted of Dieselelectric units 2815 and 2801, coupled in multiplemunt control, one mail car, one baggage-dormitory car, three coaches, one dining car, and seven sleeping cars, in the order named. All cars rere of lightweight steel construotion, and were equipped with tightiock couplers. Because of a damaged bridge on the Iine of the Louisville and Nashville Railroad this train was being detoured over the Southern Railway, was being hauled by a Southern Rallway locomotive, and was being operated by a Southern Rallway crew. This
truin departed from Bimmincham at 1:55 \%. m., 20 minutes lato, parsed l4th Street Fower, Eirmingiom, the last ojen orilce, at $2: 05 \mathrm{p} . \mathrm{m}_{\mathrm{H}}, 25 \mathrm{minutes}$ late, passed signals 75R, 1373 , and 1609, ench of rihich indicajed Procesd, ana while movine at on estimated speed of 45 miles per hour it colliced $\mathrm{i}: 1$ th No. 48 .

The Diesel-electric unit of No. 48 was moved soutir tard on the nair track a distance of 194 feet and stopred unaicht, witn all wheels denoiled. The control compartment at tie front of the unit was crushed invard and demolished, and the unit was otherrise badly damaged. The ilpst car was aerailed and stonned uprifint 108 reet south of the rear end of the Diesel-electric undt, with the front end on the main track and tie fear end on tho giding. The soutt end of this car iras telesconed the full lenetin or the passencer corpartment by the second car. The escond car ant the front truck of tine third car vere derailed. The second can was badly damered. The Diesel-electric units of Scoond 47 stopned uprisht ano 115 feet south of the coint of collision, rith the front enc. of the first unit 3 fret wrst of the track anc the renr end of the second unit 17 fent east of the trece. The control compartanent oi the rirst undt wes orished inrard and botic unita were otherwise badly damared. The tirst car stopoed oil its leit sice nend about 7 feet rortr of the point of collision, rith the front end 10 feet and the rear and z^{2} feet iast of tio track. The scond car stonped upright and 726 feet south of tho point of collision, vith the front enc a rainst the south embankment of an undernass and 70 fect vest of the tracia and the rear chd 23 feet vest of the twack. The second and tho third cams romained counled. The third car laned to the rest at an angle of about 50 doerces, with the rear end 20 faet reǧ of the track, The Éourth, fifth and the sixtlo oars reanined coupled and stopnca 'parisht, with the front end of the folntle cir against the rear end of the second can and the front end of the tiind car. The fifth and the sixth cirs were demalled and stopoed on the rondbed. The first four cans wero demolished, the next four cans rere bady damared, and the other cars veat slightly darnged.

The engineer of No. $4 E$ and a road foreman of encines on Second 47 werekilled. The conductor of No. 48 and the engineer, the ifpenan, the flamman and the basgameman of Second 47 were injured.

The veather ras clear and the sun was shining brightly at the time oi the accident, which occurred at $2: 35 \mathrm{p} . \mathrm{m}$.

Discussion

It was intended by the dispatcher that ko. 18 rould toire the sidine at Moodstock to moet both First and second 17 , the routes rere lined for these movements, and the lights on the trafifcocontrol machine indicated that the system functioned properly. No. 48 entered the siding at roodstock at the south siding-stritch and met First 47, wich was standing on the nain traci:. Although not reguired by tre rules in traffic-control territory, First 47 ras disolaying simals for a folloring section and the engineer sounded the proper encime winistle sicnal while No. 48 ras entering the siding. This sicial was achowledged by the engineer of No. 48 by tro short blasts of the pneumatic horn. The engincer of No. 48 therefore snev: that there was a second section of No. 47, al though under the method of operation hore in erfect he rad no means of =nowing there he would meet the second section. No. 48 proceeded northraici on the siding at a speed estimatod by the membeis of tho crow as about l5 miles per hour. The engine ross equinpod with a speed indicating and recording device out a tape for recording the speed was not provided. The enoineer and the fireman rore in the control compartiont of the Diesel-clectric unit, the bacgageman ras in the first car, the conductor was in the third car and the flamen ras in the reer car. Accoming to the ilreman's ste.tement, thoie was some conversction betreen the firenan and the engincer as to the probability of meeting the second section at Wooristocin. When the engine wos about 1,300 feet south of the drarf sicnal governing north-bound movenents from the sidinc, the engineer remarined to the fireman that he believed the signol ras clear. The firman then looked at the signal and said inc also thought it ras clear. There ras no further conversation betreen the encineer and the fireman win resoect to the rasect displayed by the sicnol. Both lichts of sicnal rala, fovernine north-bound main-track movements, were ied. The fireman said that go for as he knew the encineer dia not onerate the furestalling covice of the automatic train stop system wher possing over the inductor for the dierf signal. When the engine mas in the vicinity of the tumout frog, he observed that the north sicing-amitch was not in fosition ficr movement to the main track and he callea a raruing to the encineer. The engineer imnenlately made a brake aprifostion in first service nosition. finen the fireman realized that the tmain rold not be stopped short of the switch he arain warned the engineer, who moved the orake valve to rull service position. The brakes were not appliec in emercency. The train stopped after the enpine and the front truck of the first car had trailed throurh the siding sintin.

After the train stopped, the fireman immerintely alighted from the rest side of the enrine and proceeded northwnrd to piovide plag protection, using an orange-colored viping cloth which he had in $r i s$ hand. When he had gone only a siort distance ho saw Second 47 approachine at a speed which he realized was too high for that troin to be stopped short of No. 43. He gave stop signals to Second 47, winich were promotly acknowledged by the engineer of that train. The encineer of No. 48 allghted from the engine immediately beninc the fireman and proceeded southward toward a telephone booth, which was located west of the track and 92 feet south of the front end of the eneine. He mas in the immediate vicinity of the telophone booth when the collision ocurrod, and he was killed by the derailed equipment. The baggacemen alloghed from the first opr when he san the engineer proceeding toward the telephone booth. When the train stopped, the flapman ofencd the vestibule door to dotermine the reason for the stop and alighted fron the train when he observed Second 47 approaching.

As second 47: approached the point where tine accident occurred the spoed wes about 65 miles per hour. The en rineer, the fireman and a road forenan of engines rera in the control compartment of the first Diesel-electric unit, the baggageran was in the control compartment of the second Diesel-electric unit and the other nembers of the crew wele in various locations in the cars of the train. Sonthtrard controlled signal ryR at Kimbrell and southward automatic signals 1673 and 1699 cach indicated Froceed. When the engine was about 1,200 feet north of the north siding-switch at Woodstocir, the engineer and the road forman of engines observed No. 48 and soon afterward they roalized that it was occunyine the main track. The engineer then moved the brase valve to the emerroncy position. About the same time, the uncineer observad the firenain of No. 48 Eivine stop signals, winich he acrnorledsed by tro sloort blasts on the pneumatic horn. Tise speed was reduced to about 45 miles per hour when the collision occuried. The road forenar of engines and the fireman junped from the corine before the collision occurred.

The dovice on the traffic-control machine to record the time of track occupancy of OS sections had not been placed in service beceusn only 44 miles of the trafficcontrol system had been installed. This system, rhen competod, will extend betreen Burstall and Meridian, Miss., 139 miles. Horever, botin the disnatcher on duty and the chief train dispatcher were observing the control machine before and when the accident occurred, and a record of the
movements was made, which showed that No. 48 occupled the OS section at the south siding-switch at $2: 31 \mathrm{p}$. m. and occupied the OS section at the north siding-switch at 2:35 p. m. The siding between the two OS sections is 8,303 feet and the $O S$ section at the south siding-switch is 332 feet; based on this record an average speed of approximately 25 milos por hour was maintained. The dispatcher oid not attempt to change any route after it had been ilned. The dispatoher and the chief dispatcler stated that the fireman, in reporting the accident by telephone, said both he and the engineer thought the dwarf signal was clear, but when they got nean the switch ther saw that it was not lined for their train to enter the main track.

About 2 hours after the accident occurred the signal maintainer found thit the north siding-switch at Woodstock had been trailed through while locked in position for maintrack movement and that the suitch machine was not damaged. He round that the southword controlied signal was struck during tire accicent and torn from its foundation, that both northward controlled signals at the north siding-switch at Woodstock and southward antomatic signal l69e were displaying their most restrictive asnects, that track relays of all occupied tracir circuits were deenerfized, and that the directional stick relay at sional 1699 was energized. The latter condition indicates that Second 4 ? passed simnal 1699 before :Io. 48 entered the 08 section of the north siding-suitch at Woodstock and that signal 1659 indicated either Approach or Proceed. About 4 hours after the accident occurred offioials of the carrier'is signal department, accompanied by repieescatatives of the Jommission, opened the instrument housines at Woodstock and inspected the trafic-control opparatus. This inspoction disclosid that the controlling relays were in. position for northrard signals to indicate Stop, that the north sidins-switch last was operated to the position for main treck movement, that the route had been established for a south-bound movement on the main track, and that the trairiccontrol system had functioned and had transmitted an indication. code to the control machine that the route wrs lined for a south-bound movement when last operated by the dispatcher.

After the southward controlled sienal at Woodstock whs replaced complote functional tests of the trafficcontrol and automatic train-stop systens were made by forces of the carrier's sicnal department and were observed by representatives of the Comission. These tents disclosed thect a controlled signal woula not display an aspect to proceed then any opposing or conficting controlled or automatic sienal was displaying other than its most restrictive
aspect, or when the block between Kimbrell and woodstock was occupied by an opposing train, or wien the block between a signal and the next sicmal in advance governing movenents in the same direction was occuoied by a preceding train, or when a switch over whicil a sicnal governed train movements ras not in pronor position and locied. A poier-operatod siltcin could not be onerated when a controiled sínal governing movements over such switch was displayine an aspect to proceed, or when the approach signal to such controlled signal wab displaging an aspect more favorable tian Approach, or when the track circuit In which the switcin was located was occrpied. An establisned direction of trafiflc between adjacent controlled stations coula not be changed when the track between such stations was occupied, an established route could not be changed thile occupled, and an established route, not occupied, could not be changed until all controlled sipnals poverning movenents over that route were caused to display thejr most rostrictive aspects and then coula not be chonged until a time interval of about $5-1 / 2$ minutes had elapsed. In these tests this system operat.d in all respects as intended. The mechanism of the dwari signal at the nonth sidinemsidtch at Woodstock was tested and no defective condition was found. All cincuits Which could produce a false-proceed indication of the drars simnal as a result of grounding were tested and each testod a resistance both to ground and to otrer cirouits woll witinin the requiremeits of the Comission ior such teats. the roadmy equipment of the automatic train-ston system wres in condition to initiate an automatic braice application at any sirnol displaying an aspect other than Proceed. Tine autometic trainstop appaiatus on the engine of No. 4E was danaeed as a rosult of the accident to the exjent that it could not be testoc. Howover, it was founc senled when finst inspected aftor the recident occurred. It had seen tosted and had functionce properiy before the beriminn of the trin, and the wining whistlo sounded when the acrnowlec.ging lever ras onoraté at sovoral points en roxte and at eech of tro restrictive signals immediately before the train entered the sidine at Wooria to ok.

The controlled signal governine north-bound movements from the siding at Voodstock is of the drarf searchlirint type. The mechanism consists of two relays ritii honizoltal cacctive armatuies which operate contacts below tiom, and a vortioal beam carying the spectacle into wilch thres colorec disos, red, yellow and sreen, aue mounted. The novnment os the spectacle follows the novement of the armature, tins controlling
the aspect of the signai. The optical system consists of a b-watt, lo-volt lanp, a reflector into which the lamp is positioned, the colored discs or the spectacle, a truncatod cone lying in a horizontal plane, an inner lens, an oute: lens, and an ouver roundel. The outer ronmei is $8-3 / 8$ inches in diamoter ifith a smooth convex outer and a serrated inner surface. The sermations are for the purpose of deflecting the lifght beam through a vertical angle of 20 degrefs from the horizontal. The outer lens is $\{-3 / 8$ inches in diameter and is molintoc in a parallel plane and directly benind the roundel. It has smooth convex outer and concave inner surfaces. The inner lens is $A-1 / 2$ inchos in diameter, has a convex outer and a plane inner surface and is mointed in a paraliel plane and about $7-3 / 4$ inches behind the outer lens. The truncetod cone has a flat-black, serrated inior surface. The base rests anainst the inner suriace of the inner lens. The angle of trunction is about 55 dorrees from the $v e r t i c a l$ and corresponds to the an, le of the apectacle, and tine aperture formed by the truncation corresponds to the area of one of the colored discs, which move in a plane oarallel to tint of the cone aperture. This design cruses light from an external source to be reflected upward whone it is absorbed by tise flatblack serrated surface of the cone. In adaition, only the colored disc corresponding to the position of the armature can be in place at the cone aperture. As a result, a prantom arpect conveving an indication to proceed cannot be produced by light from an external source.

About 24 hours after the accident occurred and with the sun silning brichtly, it was observed by representatives of the Commission and by oficicials of the crrrier that sun?1sht was reflected by the outer roundel of the dwarf sienal. This reilected limht was white and crossed the siding at an anele; it was net visible from the siding at distances greater than about 300 feet south of the signal. It was considerably more pronounced from the west side of the siding than from the onst, and fore pronounced fion tie eround than from the ceb of an appiosuchinc eneine. Fron the cab of an approaching engine, the reniectod light disappeared at a point about 400 feet south or the signal, whero the intended aspect could be clearl: scen. On December 2, with woather conditions sinitar to tnose which urovalind when the accident occurred, a train of the sane number and kind of cars and with a Diosel-electric undt of the some class as the unit of lio. 48 on thesdry of the accident was operntod through the siding ot a specd of 15 miles per hour. The dwarf signal at the north end of the sidina was arranged to

Indicate Stop. From the cab, the dwari simal light could be seen at a distance of more than 2,000 feet but no perceptible red appeared until the engine was within 800 feet of the signal. The red in the aspect became more pronounced as the engine progressed northward. The automatic traln-stop system initiated a brake application at the dwarf signal which stomped the train in a distance of 242 feet. During these observations and tests theire was noting developed which wuld indicate that the red aspect might have appeared to be elther yellow or greer.

The light beam of the dwarf signal is deflected upward through an angle of 20 degrees. As a result, in bright sunlight the light is so diffused and dim at distances of more than about 800 feet that when the signel inaicates Stop the red in the aspect is not percentible. Wille the dwarf simal governs movements on the siding rhere speed was restricted and the aspect is adjusted for a short range view, there vas a. striking contrest at distances greater thon about 800 feet when the aspect of this signal was compared with the two lights of northwerd signal 7SLA, governing movements on the main tracis, located between the siding nnd the main track and 70.5 feet south of the dwarf sigmal. The lights of this signal were not diffused and apcenred brigit, witir distinct color, at a $\dot{\text { aistance of more than } \mathrm{k}, 000 \text { feet. The lamps in all three }}$ units rere identicnl. Acecreing to the statement of the firenan of lio. 48, the oaminemer firgt colled the indication of the drarf signal at a bufficient aistance from the signal that the red dia not appenr in the aspect. Apparently, after accepting the aspect as oroceed the enginemen did not observe the signal after the red in the aspect became clearly distinguishable, and the train wns stopped by an application of the brakes inltinted by the automatic train-stop system. From the fact that the eagine overran the switch a distance of $l 01$ leet it is apoarent that the speed was considerably in excess of 15 miles per hour.

Cruse

It is found thot this accident was coused by failure to operato tho norti-bound train in accordance with a signal indleation.

Doted at Washineton, D. C., this sixteenth day of January, 1952.

By the Commission, Comissioner Patterson.
(SEAL)
W. P. EARTEL,

